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Abstract: Precise nanostructure geometry that enables the optical biomolecular delivery of nanosen-
sors to the living intracellular environment is highly desirable for precision biological and clinical
therapies. However, the optical delivery through membrane barriers utilizing nanosensors remains
difficult due to a lack of design guidelines to avoid inherent conflict between optical force and pho-
tothermal heat generation in metallic nanosensors during the process. Here, we present a numerical
study reporting significantly enhanced optical penetration of nanosensors by engineering nanostruc-
ture geometry with minimized photothermal heating generation for penetrating across membrane
barriers. We show that by varying the nanosensor geometry, penetration depths can be maximized
while heat generated during the penetration process can be minimized. We demonstrate the effect of
lateral stress induced by an angularly rotating nanosensor on a membrane barrier by theoretical anal-
ysis. Furthermore, we show that by varying the nanosensor geometry, maximized local stress fields at
the nanoparticle–membrane interface enhanced the optical penetration process by four-fold. Owing
to the high efficiency and stability, we anticipate that precise optical penetration of nanosensors to
specific intracellular locations will be beneficial for biological and therapeutic applications.

Keywords: optical force; photothermal; plasmonics; bioplasmonics

1. Introduction

Precision genome engineering ultimately relies on delivery vehicles carrying editing
components to be efficiently delivered across cell membranes [1]. Furthermore, direct
and precise delivery to a specific intracellular location would be beneficial to ensure high
efficacy of gene editing. Real-time observation over prolonged time periods is needed to
visualize the entire delivery and gene editing processes, but this information is currently
lacking. Nonbleaching nanosensors as multifunctional optical readout and delivery vehi-
cles hold promise for enabling a new way to sense gene editing in real time [2–4]. The cell
plasma membrane serves as a barrier to prevent large macromolecules from crossing into
the intracellular environment. Since the cell plasma membrane forms a stable impenetrable
barrier, delivery of macromolecules, such as gene editing components, across membrane
barriers remains a significant obstacle [1]. To overcome this problem, various viral and
non-viral methods have been developed for delivery across membrane barriers [5]. Viral
methods [6,7] employ viruses to inject gene editing components across the cell membrane.
Non-viral methods [8–10], such as lipofection and electroporation, have been used to chem-
ically and/or physically disrupt the cell membrane to deliver gene editing components.
However, to date, achieving precise and direct delivery to desired intracellular locations
remains difficult.

Recently, optical forces [11–21] enabled precise manipulation of nano-objects [22,23].
The optical force on nano-objects consists of two major contributions, the scattering force
and the gradient force. The gradient force acts to attract the nano-object towards the focus
of the light beam while the scattering force acts to repel the nano-object along the light
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propagation direction. Using a tightly focused Gaussian laser beam, forward-directed
scattering force has been utilized to inject metallic nano-objects, such as gold nanoparticles,
through membranes. However, in metallic nano-objects [24–26], a third contribution from
absorption becomes significant. For instance, in the case of gold nanoparticles, due to their
strong and sharp resonance peak wavelength in their optical extinction properties, gold
nanoparticles efficiently absorb and convert light energy into photothermal heat. This
photothermally generated heat can be potentially damaging to cells [27]. While optical
trapping of gold nanoparticles can be achieved away from the resonance wavelength,
photothermal heat generation is still challenging.

Photothermal heat generation can be mitigated by separating the gradient force from
the scattering force and absorption. For this purpose, a radially polarized laser beam has
been proposed to trap gold nanoparticles [17], although not in the context of membrane
penetration. In radial polarization, separation of the gradient force from the scattering
force and the absorption is achieved due to the scattering force and the absorption along
the optical axis being zero while the non-propagating axial component contributes to the
gradient force. Furthermore, superposition of a radially and azimuthally polarized beam
can allow for vertical orientation of a nano-object [28]. Such a donut-shaped vector beam
has an additional benefit as the optical intensity near the center where the particle is trapped
is relatively low, which further decreases the severity of photothermal heat generation.
While angular rotation of horizontally oriented nano-objects has been demonstrated [13,18],
to the best of our knowledge, angular rotation of vertically oriented nano-objects has not
been reported.

In this work, we present a new principle of angularly rotating vertically oriented
metallic nanosensors for enhancing membrane penetration (Figure 1). Unlike conventional
horizontally oriented metal nanosensors [11,13], angularly rotating vertically oriented
metallic nanosensors can substantially enhance the applied force normal to the membrane
but has not been yet demonstrated. Furthermore, engineering precise nanostructure geom-
etry [29–31] with sharp edges and gradually varying cross-sectional areas can be exploited
to pierce or drill through membrane barriers. In essence, we propose vertically oriented
nanosensors as multifunctional nanodrills utilizing optical rotational forces. We show that
by altering the nanostructural geometry of the nanosensor, we maximize optical penetra-
tion depth while minimizing photothermal heat generated during optical penetration. We
develop a theoretical model of lateral stress induced by an angularly rotating, vertically
oriented nanosensor on a membrane barrier. Furthermore, we show that by adjusting
the nanosensor geometry, we effectively increase local stress fields at the nanoparticle–
membrane interface, thereby enhancing the optical penetration process. Direct and precise
delivery of nanosensors to specific intracellular location opens a wide range of biological
and therapeutic applications [2,11,32–45], ranging from precision genome engineering to
real-time ultraprecision imaging to quantitative medicine.
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Figure 1. Optical penetration of shape-controlled metallic nanosensors across cell membrane 
barriers. (a) Conceptual schematic of nanosensors carrying editing components to be delivered 
across cell membrane barriers. (b) Conceptual schematic of AuNR nanosensor delivery: (i) 
penetration across cell membrane barrier, (ii) absorbance spectrum: absorption cross-section versus 
wavelength, (iii) three-dimensional model of power absorbed for AuNR nanosensor. (c) Conceptual 
schematic of AuBP nanosensor delivery: (i) penetration across cell membrane barrier, (ii) 
absorbance spectrum: absorption cross-section versus wavelength, (iii) three-dimensional model of 
power absorbed for AuBP nanosensor. 
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interacts with nano-objects aligned parallel with the polarization direction. When the 
single vectorial beam is tightly focused through a high numerical aperture objective, it is 
possible for the electric field to have a significant longitudinal component as a result of 
destructive interference of the transverse components [46]. In this way, nano-objects can 
be vertically oriented. Light can exert forces on matter by transferring angular momentum 
from light to the nano-object. Spin angular momentum at the focal plane from the orbital-
to-spin angular momentum conversion [47] can be then utilized to rotate vertically 
oriented nano-objects in order to rupture membrane barriers. Furthermore, focused 
higher order vector beams [48] that simultaneously contain radial, azimuthal, and 
longitudinal components where the relative magnitudes of these components can be 
tuned to achieve flexible and complex nano-object orientation and rotation. The strong 
longitudinal component aligns the nano-object vertically, while the radial component 
optically induces rotation. In contrast to previously demonstrated horizontally oriented 
nano-objects that rotate about their short axes normal to the optical axis [11,13], we studied 
the effect of nanostructural geometry of vertically oriented nano-objects using two distinct 
metallic nanosensor geometries: gold nanorod (AuNR) nanosensors and gold bipyramids 
(AuBP) nanosensor. AuBP nanosensors have a pentagonal cross-section, and the AuNR 
nanosensors possess a circular cross-section. The AuBP nanosensors display a narrower 
spectral bandwidth compared to the AuNR nanosensors, which is beneficial for optical 
trapping (Figure 1). Membrane rupture is ultimately required for a delivery nanosensor 
to reach an intracellular site. In the vertical orientation, we conjectured that the variable 

Figure 1. Optical penetration of shape-controlled metallic nanosensors across cell membrane
barriers. (a) Conceptual schematic of nanosensors carrying editing components to be delivered across
cell membrane barriers. (b) Conceptual schematic of AuNR nanosensor delivery: (i) penetration
across cell membrane barrier, (ii) absorbance spectrum: absorption cross-section versus wavelength,
(iii) three-dimensional model of power absorbed for AuNR nanosensor. (c) Conceptual schematic of
AuBP nanosensor delivery: (i) penetration across cell membrane barrier, (ii) absorbance spectrum:
absorption cross-section versus wavelength, (iii) three-dimensional model of power absorbed for
AuBP nanosensor.

2. Results and Discussion

Superposition of a radially and azimuthally polarized vectorial beam can allow for
three-dimensional (3-D) orientation of a nano-object [28]. The vectorial beam polarization
interacts with nano-objects aligned parallel with the polarization direction. When the single
vectorial beam is tightly focused through a high numerical aperture objective, it is possible
for the electric field to have a significant longitudinal component as a result of destructive
interference of the transverse components [46]. In this way, nano-objects can be vertically
oriented. Light can exert forces on matter by transferring angular momentum from light
to the nano-object. Spin angular momentum at the focal plane from the orbital-to-spin
angular momentum conversion [47] can be then utilized to rotate vertically oriented nano-
objects in order to rupture membrane barriers. Furthermore, focused higher order vector
beams [48] that simultaneously contain radial, azimuthal, and longitudinal components
where the relative magnitudes of these components can be tuned to achieve flexible and
complex nano-object orientation and rotation. The strong longitudinal component aligns
the nano-object vertically, while the radial component optically induces rotation. In contrast
to previously demonstrated horizontally oriented nano-objects that rotate about their short
axes normal to the optical axis [11,13], we studied the effect of nanostructural geometry of
vertically oriented nano-objects using two distinct metallic nanosensor geometries: gold
nanorod (AuNR) nanosensors and gold bipyramids (AuBP) nanosensor. AuBP nanosensors
have a pentagonal cross-section, and the AuNR nanosensors possess a circular cross-section.
The AuBP nanosensors display a narrower spectral bandwidth compared to the AuNR
nanosensors, which is beneficial for optical trapping (Figure 1). Membrane rupture is
ultimately required for a delivery nanosensor to reach an intracellular site. In the vertical
orientation, we conjectured that the variable surface area along the length of the AuBP
nanosensors may enhance the penetration process. We reasoned that when vertically
oriented, the radius of the AuBP nanosensors gradually increases at a slower, linear pace
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until the maximum radius at the center is reached as compared to the AuNR nanosensors
in order to aid the penetration process. This results in the AuBP nanosensor achieving a
deeper penetration before reaching the same cross-sectional area as compared to the AuNR
nanosensor. The geometry is defined by length l and radius r measured at the center of the

nanosensor shown in Figure 2. We assumed the membrane sustained a constant force
⇀
F z in

the direction normal to the membrane, creating normal stress on the membrane. The normal

stress is defined as σz =
⇀
|Fz|/A, where

⇀
Fz is the applied force normal to the membrane and

A is the cross-sectional area of the nanosensor. At a critical σz, defined as the membrane
rupture critical threshold σc, the membrane will rupture, allowing the nanosensor to
penetrate through the membrane barrier. Previous research in the literature [49] measured
σc to be 10 kPa. Figure 2 depicts the penetration depth, D, defined as the depth at which
normal stress on the membrane reaches below the critical σz (i.e., length of the nanosensor
passing through the membrane barrier). D was calculated while iterating through the range
of combinations of geometrical parameters r and l to yield Figure 2. For a rod-shaped
geometry, D equaled the length of the nanosensor (i.e., full penetration) when the radius
was below 25 nm, but immensely fell off when the radius exceeded 25 nm. This is explained
by the failure of the nanosensor to penetrate the membrane barrier as the cross-sectional
area of the AuNR nanosensor quickly became large. Horizontally oriented nano-objects
also suffer from this limitation, as the cross-sectional area interfacing the membrane is
significantly large compared to angularly rotating vertically oriented nano-objects. Hence,
it remains challenging to utilize horizontally oriented nano-objects to penetrate through
membrane barriers. In comparison, the AuBP nanosensor displays similar behavior at radii
under 25 nm, but provides a much more dynamic response at radii greater than 25 nm,
attributed to the increased efficacy of penetration with more sharp edges and more gradual
cross-sectional area changes.

Metallic nano-objects efficiently absorb and convert light energy into photothermal
heat, which can be potentially detrimental to biological cells. Thus, we then investigated
whether photothermal heat generation can be minimized by varying nanostructure geome-
try using finite element analysis (FEA). We compared the generation of photothermal heat
in the AuNR nanosensors and the AuBP nanosensors. In this investigation, we assumed
the complex permittivity to be a function of wavelength [50] and the relative permeability
of gold µr = 1. Over a range of geometrical parameter r from 5 to 200 nm and a range
of geometrical parameter l from 50 to 400 nm, the nanosensor rested within an aqueous
exterior and was excited with a tightly focused single vectorial beam with a laser power
of 45 µW in the near-infrared wavelength regime (700 nm–900 nm) [23]. The membrane
was assumed to be fluid with permeability of µr = 1 and permittivity between 2–10 [51].
Since the nanosensor was in contact with the membrane, it can be reasonably assessed
that the temperature of the membrane is close to the temperature of the nanosensor at
the nanoparticle–membrane interface. The resulting surface temperatures of both the
AuNR nanosensor and the AuBP nanosensor at specific geometrical parameters r and l
can be observed in Figure 2. At similar geometrical parameters r and l, we found a lower
maximum temperature for the AuBP nanosensors, indicated by a peak temperature of
412 ◦C for the AuNR nanosensor against 340 ◦C for the AuBP nanosensor at r = 10 nm and
l = 50 nm. Taken together, these results show that penetration depth can be maximized
while photothermal heat generated can be minimized by varying the nanosensor geometry.
Minimization of photothermal heat generation during optical penetration addresses one of
the current limitations in nanosensor-delivery-based methods. Furthermore, to decouple
photothermal heat generation from optical penetration, we considered a dielectric material
(silica nanorod (siNR) and silica bipyramid (siBP)), which do not undergo the same level
of photothermal heat generation in Figure S1. At all input laser levels, gold nanosen-
sors underwent more photothermal heat generation than silica nanosensors, alongside
the expected increase in heat generation of the nanorod compared to the bipyramid. To
further distinguish nanostructural geometry (rod vs. bipyramid) from mechanical property
changes induced by photothermal heat generation, we compared the lateral stress gener-



Sensors 2023, 23, 2824 5 of 13

ated by the nanosensors at variable temperatures. Figure S2 shows the gradual decrease in
lateral stress as temperature increases for both the nanorod and the bipyramid, as viscos-
ity of the membrane is affected. The bipyramid nanosensor outperformed its respective
nanorod counterpart in generating lateral stress at all temperatures. These results show
that even though temperature may have an effect on the relative lateral stress generated by
the bipyramid and the rod, nanostructural geometry is still primarily responsible for the
stress variation. In physiological conditions, bipyramidal nanosensors are preferable for
optical penetration of membrane barriers.
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Figure 2. Penetration depth by applied normal force is greater for the AuBP nanosensor compared
to the AuNR nanosensor. (a) Conceptual schematic of optical penetration of (i) AuNR nanosensor

and (ii) AuBP nanosensor.
⇀
F z: normal force, l: total length of nanoparticle, r: radius at the center

of nanoparticle, D = optical penetration depth defined as the depth at which normal stress on the
membrane reached below the critical σz. (b) Comparison of optical penetration depth D as a function
of geometric parameters r and l for (i) AuNR nanosensor and (ii) AuBP nanosensor. (c) Comparison
of maximum local temperature when excited with P = 45 µW laser estimated based on FEA as a
function of geometric parameters r and l for (i) AuNR nanosensor and (ii) AuBP nanosensor.
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We next studied whether angularly rotating, vertically oriented nano-objects can fur-
ther enhance membrane penetration (Figure 3). We proposed to orient a nanosensor in
the vertical direction to maximize the normal force applied on the membrane. To this
end, we developed a theoretical model of lateral stress induced by an angularly rotating
nanoparticle on a membrane. Angular rotation rates ω ~50 kHz have been previously
generated [13]. When a nanosensor is subject to an external rotating force while trapped on
the membrane, the rotational friction force is balanced by the external rotating force. As-
suming the membrane is fluid with a sufficiently low Reynolds number [52], the rotational
friction force adapted from a spherically shaped nanosensor [53] to a bipyramidal shaped
nanosensor can be written as

⇀
Fxy = Sµav (1)

where S = f ksπ is the coefficient adapted for a bipyramidal nanosensor (see Methods), f is
the shape factor [52,54], ks is the friction factor [55], µ is the viscosity of membrane [56], a
is the radius of the nanosensor at the center [40,57,58], and v is the angular velocity of the

nanosensor at the center [59]. The lateral stress is then defined as σxy =
⇀∣∣Fxy
∣∣/A, where A is

the surface area of the membrane interface. As the AuBP nanosensor is vertically oriented,
this nanosensor has a variable surface area at the area where friction is generated, as each
“slice” of nanosensor has different geometric properties. Thus, we considered the entire
lateral stress generated by rotation to be applied to a small, thin area of particle that is
currently penetrating into the membrane and discounted any lateral stresses generated by
the surrounding fluid. In Figure 3, with an angular rotation rate of ω = 50 kHz, we plotted
the results of Equation (1) with different nanosensor geometrical parameters. We observed
that increasing either geometrical parameter r or l of the nanosensor increased the lateral
stress generated (Figure 3c). Three curve lines corresponding to σxy = 10, 20, and 35 kPa
stress generation were plotted and can be referred to as threshold penetration curves, in
which a membrane with the corresponding membrane rupture critical threshold σc allowed
a nanosensor above the penetration curve to penetrate fully, while a nanosensor underneath
the curve only allowed for partial penetration. Figure 3c displays the full percentile
penetration depths of nanosensors interacting with a membrane with a membrane rupture
critical threshold σc = 35 kPa. From this result, we observed that changing the geometrical
parameters r and l of the nanosensor enhanced the percent penetration depths. Of note,
changes in geometrical parameter r corresponded to larger changes in percent penetration
depths compared to changes in geometrical parameter l of the nanosensor.

To better understand the spatial localization of lateral stress, we further performed
theoretical studies of AuNR and AuBP nanosensors vertically oriented normal to the mem-
brane (Figure 4). The nanosensor was modeled as a two-dimensional (2-D) axisymmetric
geometry, and the fluid domains were rotated at the angular rotation rates ω between
500 Hz to 10 kHz [59] to simulate the rotational forces. Assuming the viscosity of the mem-
brane to be 0.3 Pa·s [56], the resulting lateral stress at the interface between the membrane
and nanosensor was simulated. At a fixed penetration depth, we defined the offset lo to
be between the center of the nanosensor and the center of the membrane. We found that
the lateral stress localized at the beginning and at the end of the interface (Figure 4b). For
the AuNR nanosensor, the interface remained constant along the length of the nanosensor.
Thus, the lateral stress generated remained constant as a function of lo. In contrast, the
interface was variable along the length of the AuBP nanosensor, resulting in a variable
lateral stress generated as a function of lo (Figure S3). Notably, we observed higher lateral
stress generated along the tips of the AuBP nanosensor, thereby enhancing membrane
penetration. In Figure 4c, we computed the average lateral stress σave at the membrane–
nanoparticle interface as a function of lo and ω. We observed a positive correlation between
lo and σave, indicating that more stress was generated when the membrane surrounded the
tips of the AuBP nanosensor due to the smaller cross-sectional area of the AuBP nanosensor.
We observed a four-fold higher σave for the AuBP nanosensor compared to the AuNR
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nanosensor. Engineering the nanostructure geometry to enhance optical penetration can
aid in the precise and specific biomolecular delivery of nanosensors.
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Figure 3. Penetration with angular rotation generated lateral stress at the membrane. (a) Concep-
tual schematic of the lateral stress model. ω = angular rotation, σxy = lateral stress, l: total length of
nanoparticle, r: radius at the center of nanoparticle. (b) Table of parameters for the calculation of
σxy: shape factor f, friction factor ks, viscosity of the membrane µ, particle radius at the center a, and
angular velocity at the center v. (c) (i) Minimum lateral stress generation as a function of geometrical
parameters r and l. (ii) Penetration depth D as a function of geometrical parameters with a membrane
rupture critical threshold of σc = 35 kPa. Penetration depth D is defined as the depth at which normal
stress on the membrane reached below the critical σz.
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principle, it is possible that modifying the surface chemistry and charge could further 

Figure 4. Local lateral stress at the nanoparticle–membrane interface increased penetration depth
for the AuBP nanosensor compared to the AuNR nanosensor. (a) Conceptual schematic of average
stress generation at the membrane interface and inset of membrane interface for (i) AuNR nanosensor
and (ii) AuBP nanosensor. ω = angular rotation, l: total length of nanosensor, lo: offset between
center of nanosensor and center of membrane. (b) Local lateral stress contours at the nanoparticle–
membrane interface for (i) AuNR nanosensor and (ii) AuBP nanosensor. lo = 30 nm, ω = 10 kHz.
(c) (i) Average lateral stress at the membrane–nanoparticle interface as a function of lo and ω for the
AuNR nanosensor. (ii) Average stress at the membrane–nanoparticle interface as a function of lo and
ω for the AuBP nanosensor.

In discussion, we demonstrated significantly enhanced optical penetration of metallic
nanosensors by engineering nanostructure geometry with minimized photothermal heating
generation for penetrating across membrane barriers. Metallic nanosensors in aqueous me-
dia carry electric charge. Metallic nanosensors can have widely varying surface chemistry
and charge, which can affect optical penetration. In principle, it is possible that modifying
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the surface chemistry and charge could further enhance optical penetration in a synergistic
manner. Varying the surface chemistry and charge has been shown to increase the electric
polarizability, leading to enhancements in optical forces in the femtonewton range [60].
Enhancing optical penetration in the piconewton range has not yet been explored so far
and presents a future opportunity of study in further maximizing optical penetration. This
work can be also extended to other types of nanosensors exhibiting anisotropic geometries,
such as dielectric nanosensors, in the future.

3. Conclusions

In summary, optical penetration exhibiting minimized photothermal heat generation
aids delivery of nanosensors to the desired intracellular sites for biological and therapeu-
tic applications. We introduced a new concept of angularly rotating vertically oriented
metallic nanosensors for enhancing membrane penetration. We show that by varying the
nanosensor geometry, optical penetration depth can be maximized while photothermal
heat generated during optical penetration can be minimized. We derived a theoretical
model of lateral stress induced by an angularly rotating, vertically oriented nanosensor on
a membrane. We show that by varying the nanosensor geometry, local stress fields at the
nanoparticle–membrane interface can be maximized to aid the optical penetration process.
We show that optical penetration of nanosensors, serving as multifunctional nanodrills,
exhibit minimized photothermal heat generation. We anticipate that such multifunctional
nanosensors will lead to safer and more effective methods of penetrating, transporting, and
detecting nanosensors across biological cell membranes in real time, which is beneficial for
precision biological and therapeutic applications.

4. Methods
4.1. Normal Stress

MATLAB software was used to compute the normal stress generation and the penetra-
tion depth. Nanosensor radii ranged from 20 nm to 200 nm and nanosensor lengths ranged
from 50 nm to 400 nm based on experimentally feasible geometries [40]. The radii corre-
sponded to the maximum radius at the center of the nanosensor. First, cross-sectional area
at multiple points along the length of the nanosensor was calculated for each radii/length

pair, and then the input normal force
⇀
F z = 15 pN [23] was used to find the normal stress

function. Given the critical stress (σz = 10 kPa), the point at which the stress failed to exceed
this value was reported as penetration depth. Penetration depths were calculated while
iterating through the range of combinations of radii and lengths.

4.2. Photothermal Heat

COMSOL software ver. 5.6 was used to solve the heat transfer equation: ρCpu · ∇T −
k∇ · ∇T = Q for both rod and bipyramidal nanosensors using the heat transfer COMSOL
module. The nanosensor rested within an aqueous exterior, and was excited with a tightly
focused single vectorial beam [28] of laser power of 45 µW in the near-infrared regime
(700 nm–900 nm) [23]. With multiple geometric parameter sweeps of radii 5 nm–200 nm
and lengths of 50 nm–400 nm, we used a constant aqueous exterior of 5 µm. We assumed
the complex permittivity to be a function of wavelength [50] and the relative permeability
of gold µr = 1. The membrane was assumed to be fluid with permeability of µr = 1 and
permittivity between 2 F/m–10 F/m [51]. Triangle-type meshing was utilized with a
minimum and maximum element size of 0.1 µm and 0.8 µm, respectively. The temperature
of the outmost surface was set to be 293.15 K as the boundary condition. The temperature
ranged from 40 ◦C at a 200 nm radius and 400 nm length to 240 ◦C at a 5 nm radius and
50 nm length. Four nanosensors (AuNR, AuBP, siNR, siBP) of nominal size (r = 50 nm,
aspect ratio = 4) were exposed to laser powers between 10 µW to 100 µW. Absorbed power
was based on absorption cross-section. Average temperature was measured along the
interface between the nanosensors and the surrounding fluid environment.
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4.3. Lateral Stress

COMSOL software ver. 5.6 was used to solve the incompressible Navier–Stokes
(ρ∇·u = 0) equations for the bipyramidal nanosensor using the laminar flow (spf) COM-
SOL module. The nanosensor was modeled as a 2D axisymmetric geometry, and the
fluid domains were rotated at angular rotation rates ω between 500 Hz to 10 kHz [59] to
simulate the rotational forces. The resulting stress at the interface between the membrane
and the nanoparticle was calculated. The material properties and viscosity of this liquid
exterior was set to a viscosity of 8.2 × 10−4 cP and the viscosity of the membrane was set to
0.3 Pa·s [56]. We assumed the complex permittivity to be a function of wavelength [50] and
the relative permeability of gold µr = 1. Triangle-type meshing was utilized with a mini-
mum and maximum element size of 1 nm to 50 nm, respectively. The boundary conditions
were set to be no-slip at the edges of the model (walls). Lateral stress was measured using
rod and bipyramidal nanosensor models. The effect of temperature variation from 20 ◦C to
60 ◦C was expressed as a change in the viscosity of the membrane. A gradual decrease in
viscosity from 0.3 to 0.04 Pa·s was applied as temperature was increased [61].

4.4. Shape Factor

For a bipyramidal nanosensor, the shape factor [52,54] was defined as

f = (
1
3
)(2
√

ψ +
√

Ψ)

where ψ is the surface area sphericity (ratio of the surface area of a sphere with identical
volume as the nanosensor to the actual surface area of the nanosensor) and Ψ is the cross-
sectional sphericity (ratio of the cross-sectional area of a sphere with identical volume as
the nanosensor to the actual cross-sectional area of the nanosensor).

4.5. Friction Factor

Previous research in the literature [55] reported the effect of complex shaped particles
and geometrical parameter aspect ratio on hydrodynamic properties in viscous media.
Based on the previous literature [55], we plotted the friction factor ks as a function of
geometrical parameter aspect ratio (Figure S4).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23052824/s1, Figure S1: Photothermal heat generation of metallic-
based and dielectric-based nanosensors; Figure S2: Lateral stress of AuNR and AuBP under environ-
mental temperature variation; Figure S3: Local lateral stress at the nanoparticle-membrane interface;
Figure S4: Friction factor.
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